
Abstract Delete - Geese Lightning

Testing Report

Our team decided to do system testing using black-box tests, unit testing (white-box), and peer
reviews (static tests). We felt this was sufficient since we were developing a small system which was
not safety critical. Testing was still very important to us as it improved the quality of our code,
increased the confidence of the rest of the team, and likely the stakeholders too.

We used test-driven development [1] when suitable which ensured our implementation satisfied the
requirements. This was done by coming up with tests before implementing the software that was to be
tested, giving faster feedback and helping developers understand what they need to code. Most of
these tests were black-box as they were easily written up compared to unit tests. After implementation
of the other tests, both black-box and unit tests were added to try to cover as much as possible. We
ran these tests as we went and again when we were happy with our implementation to produce this
testing report. Our requirements testing [2] document creates links between tests and requirements to
allow us to easily show what requirements have and haven’t been met with easy traceability. A lot of
the tests cannot be linked directly to the requirements as a lot of the features we are testing are
implicit.

The white-box testing was done using unit tests, more specifically JUnit 4. We quickly noticed that our
unit tests were useful for regression testing (checking the software still functions as expected after
changes are made). Our implementation included game logic in some classes that implement Screen,
notably our Level class. This made it very difficult to test with JUnit because it had to be rendered to
function correctly. For this reason, mostly black-box tests cover these classes. We used IntelliJ which
had built in the option to “run with coverage” which allowed us to measure the coverage of our tests.
This gives both the team and stakeholders an idea of how thorough our testing is. However, this value
cannot be taken at face value because our black-tests will not contribute to this metric.

The black-box testing was done by running the game and making sure it acted as expected for that
test. White-box tests are preferred over black-box since errors encountered during black-box testing
can be difficult to reproduce and the amount of coverage cannot be easily measured. Luckily since
LibGDX itself has been thoroughly tested [3], we were able to focus on testing what we added on top
of what LibGDX offers to developers.

We created a GitHub project board to assign and manage tasks, one column in the project board was
“To Review”. When a task that involved coding was completed it was added to this section and then
another member of the team had to verify the code. If they agreed with the implementation they
moved it to the “Done” column, otherwise, they moved it back to “In Progress” column and told the
person who originally moved it why. This made sure all code was double checked and up to standard.
All code added to the git repository was reviewed this way, greatly reducing the amount of poor code
in the final software system. This is a form of static testing since the code does not have to be run.
This allowed us to test code before it is fully implemented which was very useful for more difficult
problems that couldn’t be solved straight away.

Test Statistics

There are separate files for testing evidence for white-box and block-box tests but both use a tabular
format. Each test has an ID to make it easily traceable to requirements, a description to give the
reader a better understanding of the test, a section to say whether it passed or failed, and another
column for any additional comments. With the exception of tests 7.2 and 7.3, tests that cover

Abstract Delete - Geese Lightning

unimplemented requirements have not been included. See the references section of this document for
links to all the testing material.

23 of 27 of our black-box tests passed [4]. The three tests that failed are noted below with reasons why.

➢ 7.2 - Save button creates a text file containing the current game state.
○ Despite this feature having a test, we have not yet implemented it. However, we still felt

that it was important to include this tests as a non-functioning save button still exist in our
game.

➢ 7.3 - Load button gives you the option to load any of the save files.
○ Again we had not implemented this feature but a load button still existed in our game.

➢ 9.1 - Completing the town or Halifax level increments game progress.
○ We noticed late in the development process that upon completing the Halifax level the

game sometimes crashed. Due to time constraints we did not manage to fix this issue.
➢ 10.1 - The player faces in the direction of the mouse pointer at all times.

○ This test failed as when the player is attacking it will not change direction. We didn’t
attempt to pass this test because we liked that it stopped the player from holding down the
mouse button to attack as fast as possible.

46 of 46 of our black-box tests passed [4]. We think that our black-box tests are suitable as they cover
all parts of the game that we couldn’t test in a more controlled environment. Black-box tests by nature
can be difficult to reproduce but we think that due to the detail in our Black-Box Testing Evidence
document [$] other people will be able to reproduce our tests and get the same results.

33 of 33 43 of 43 tests passed of our white-box tests passed [5]. We also ran the tests using IntelliJ’s
built is code coverage runner. We were happy with our unit testing coverage because what was not
tested in this way was covered by black-box tests which were able to cover system and integration
tests also.

We struggled to test classes that used LibGDX’s Screen class with unit testing, these included Level,
TownLevel, HalifaxLevel, CourtyardLevel, Loading Screen, Menu Screen, SelectLevelScreen, and
TextScreen. We aimed to test these classes more thoroughly with black-box tests as an alternative.

We felt ZeprInputProcessor didn’t need testing because it was, for the most part, just a standard
LibGDX InputProcessor which has been tested by the LibGDX team. What we did add was a mouse
pointer position that is used for the player direction and player attacks, which was tested (tests 10.1
and 10.2) and passed. We have attempted to get the best test coverage possible for all other
classes.

Abstract Delete - Geese Lightning

Abstract Delete - Geese Lightning

References

[1] Agiledata.org. Introduction to Test Driven Development. [online] Available at:
http://agiledata.org/essays/tdd.html [Accessed 16 Jan. 2019].
[2] Requirement Testing. [online] Available at:
https://drive.google.com/a/york.ac.uk/file/d/1KlEe5ZuO5Uau9hi8U8sXQfrEY0Y8ByP-/view?usp=shari
ng [Accessed 20 Jan. 2019]
[2] Requirement Testing. [online] Available at
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/Requirement
%20Testing.pdf [Accessed 17 Feb. 2019]
[3] GitHub. (2019). LibGDX Testing. [online] Available at:
https://github.com/libgdx/libgdx/tree/master/tests [Accessed 16 Jan. 2019].
[4] Black-Box Tests. [online] Available at:
https://drive.google.com/a/york.ac.uk/file/d/1MOTAnexh0i3vHoNs4XxCxbprjVM150Sr/view [Accessed
19 Jan. 2019]
[4] Black-Box Tests. [online] Available at
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/Black-Box%
20Tests.pdf [Accessed 17 Feb. 2019]
[5] White-Box Tests. [online] Available at:
https://drive.google.com/file/d/1y_Ktkox5_NS9L44yocPB24uHCiNZp9_U/view [Accessed 19 Jan.
2019]
[5] White-Box Tests. [online] Available at
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/White-Box%
20Tests.pdf [Accessed 17 Feb. 2019]

http://agiledata.org/essays/tdd.html
https://drive.google.com/a/york.ac.uk/file/d/1KlEe5ZuO5Uau9hi8U8sXQfrEY0Y8ByP-/view?usp=sharing
https://drive.google.com/a/york.ac.uk/file/d/1KlEe5ZuO5Uau9hi8U8sXQfrEY0Y8ByP-/view?usp=sharing
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/Requirement%20Testing.pdf
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/Requirement%20Testing.pdf
https://github.com/libgdx/libgdx/tree/master/tests
https://drive.google.com/a/york.ac.uk/file/d/1MOTAnexh0i3vHoNs4XxCxbprjVM150Sr/view
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/Black-Box%20Tests.pdf
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/Black-Box%20Tests.pdf
https://drive.google.com/file/d/1y_Ktkox5_NS9L44yocPB24uHCiNZp9_U/view
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/White-Box%20Tests.pdf
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%203/White-Box%20Tests.pdf

